From Individuals to Populations: Modeling Aquatic Toxicity Data Across Levels of Biological Organization

Sandy Raimondo and Charles L. McKenney, Jr. USEPA/ORD/NHEERL/GED

Environmental Issue

- · The Office of Prevention, Pesticides, and Toxic Substances (OPPTS) requires efficient methods to evaluate the ecological effects of thousands of chemicals.
- · Ecological risk needs to incorporate population-level response of organisms exposed to toxicants.
- Matrix population models provide a tool for determining Americamysis bahia is standard population effects from traditional toxicity data.

EPA estuarine test organism

Scientific Approach

· Stage-structured matrix models were developed from complete life-cycle tests of the mysid (Americamysis bahia) exposed to 5 to 6 test solutions of 6 toxicants.

Stage
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 0 & 0 & 0 & 0 & F_5 & F_6 & F_7 \\ G_1 & P_2 & 0 & 0 & 0 & 0 & 0 \\ 0 & G_2 & P_3 & 0 & 0 & 0 & 0 \\ 0 & 0 & G_3 & P_4 & 0 & 0 & 0 \\ 0 & 0 & 0 & G_4 & P_5 & 0 & 0 \\ 0 & 0 & 0 & 0 & G_5 & P_6 & 0 \\ 0 & 0 & 0 & 0 & 0 & G_6 & P_7 \end{pmatrix}$$

Seven stage transition matrix, A, composed of the probability of surviving within a stage, P_i , probability of transitioning within a stage, G_i , and the reproductive output of females within a stage, F_i .

 Toxicity test endpoints were compared to population growth rate, λ , obtained from matrix models.

Individuals to Population Synthesis

Individual-level effects

- no effect
- delayed reproduction
- reduced overall reproduction
- reduced overall reproduction and reduced survival

	Test Solution					
	1	2	3	4	5	6
Endosulfan		DR	DR	R S	R S	
DEF	DR	DR	DR	R S	R S	
Fenthion			DR	R	R S	
Thiobencarb			R	R	R S	R S
Methoprene				R	R	R S
Silver Nitrate	DR	R	R	R	R S	
- Direct Petrological					100	

= no observable effect (NOEC) R = overall reproduction reduced = delayed reproduction = survival and reproductive effects Population growth rate for each individuallevel response found that not all individuallevel responses result in a significantly reduced population growth rate

Individual-level Response

Median population growth rate modeled of toxicant concentrations resulting in each individual-level response (*Kruskal-Wallis, P<0.05).

Conclusion:

Population models link traditional toxicity approaches and need for population-level assessment